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Abstract. Our aim is the formulation of a tractable quantum theory capable of dealing 
properly with the length and time scales relevant to modern submicron devices. The Kadan- 
off-Baym-Keldysh non-equilibrium Green function method is employed to develop a for- 
malism appropriate for high fields. No perturbation expansion arguments are employed. 
The equivalence of the two Kadanoff-Baym equations for the correlation function GC for 
these systems is demonstrated. A relation analogous to the equilibrium case between G<,  
the spectral function A and the quantum distribution function f is derived at high fields 
without the loss of the intracollisional field effect. 

1. Introduction 

In the semiclassical theory, transport phenomena are described by a distribution function 
f ( p ,  R ,  t )  which is the density of particles with momentum p at the point R and time t .  
Obviously, this assumes that the position and momentum of the particle can be defined 
simultaneously. If quantum effects are important, this description is no longer valid. 
Quantum mechanical situations are found in submicrometre devices where the mean 
free times can be of the order of s and the mean free paths are about 50 A [l]. One, 
then, needs to take into account the uncertainty relations and include the broadening of 
the energy and momentum states caused by the scattering processes [2]. Energy (hw)  
and momentum must now be considered as independent variables and we need a 
distribution functionf(p, R ,  w ,  t )  that depends on four variables in place of the semi- 
classicalfwhich depends on ( p ,  R ,  t )  only. Of course, we can always remove the effects 
due to the uncertainty principle by performing some coarse-graining average in phase 
space, for instance by summing f(p, R ,  w ,  t )  over all energy states [3]. A theory of 
transport capable of overcoming the limitations of the semiclassical approach can be 
formulated within the Green function formalism as developed by Kadanoff and Baym 
[4], Keldysh [5] and Langreth [ 6 , 7 ]  although, so far, none of the approaches that have 
used this technique are able to account properly for the high-field behaviour of quantum 
systems. Here, we would like to clarify the nature of the problems encountered in 
the description of non-equilibrium transport phenomena, and propose a new line of 
approach based on an Airy space formulation. 

0953-8984/90/275991 + 16 $03.50 @ 1990 IOP Publishing Ltd 5991 
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The various Green functions express the correlation between the field operator $ 
(1) of the particle at the space-time point (rl, t l )  and the conjugate field operator $'(2) 
at another point (r2, t2) ,  namely 

~ ' ( 1 ~ 2 )  = -(i/fi)($(l)$+@)) 

G'(17 2) = -(i/fi)([W), $+(2)12)WI - t 2 )  

~ ' ( 1 ,  2) = t(i/fi)($+(2)$(1)) 

Ga0, 2) = (i/fi)([$(% $+(2)1A 

Here the + (-) sign refers to fermions and anticommutation (bosons and commutation). 
The angular bracket ( . . , )indicates a thermodynamic average for equilibrium situations 
and an average over the available states for non-equilibrium systems. The interactions 
of the particles with the crystal are represented by the equivalent self-energy functions 
C'~a~<. '  [4-71. Another important function is the spectral density 

If A is a function only of the difference of its arguments, its Fourier transform A(p, o) 
gives the probability that a particle with momentump will have energy fiw [3,4]. 

From its definition, G' is proportional to the density of particles and therefore has 
the character of a distribution function. Indeed, the average value (Q) of any operator 
Q that is the sum of one-body terms can be expressed immediately in terms of G'. In 
fact, when such a quantity is written in the second-quantisation formalism, from the 
commutation properties of the field operators, we have [8] 

(Q(t))  = I dr(Gt(r7 t)Q(r, t)$(r, t ) )  = kifi I d r  lim Q(r ,  t)GC(r, t ;  r' ,  t). (1.1) 
r-+ r' 

The equations of motion for the Green function defined above follow directly, and 
exactly, from the Schrodinger equations for the field operators $ and $'. They can be 
expressed, by using the matrix notation [9] 

(G, = G< + G', G,- = G' - Ga and analogously for  et,^) as 

( i f i k  - H(l))G(I, 2) = b4(l  - 2)'i + d3 $(1,3)6(3,2) (1.2a) I 
(in-& - H(2))G(1,2) = b4(l  - 2)i + d3 G(1,3)$(3,2). (1.2b) I 

I is the identity matrix and the Hamiltonian contains only the non-interacting terms, that 
is, the kinetic energy operator and the external fields. 

Because of the multiple integrations, these equations are quite difficult to solve. They 
simplify considerably for homogeneous systems in equilibrium, where the arguments of 
the Green functions and self-energies depend only upon the difference of their 
arguments: (1,2) = (1-2). In these cases, the Fourier transforms of these quantities will 
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be diagonal in bothp and w and (1.2) will be just algebraic equations that can be easily 
solved [lo] and each leads to the same result 

G'(p, w )  = G'(p, w )  Za(p, w)Ga(p, 

G7P7 = A b ,  W ) f ( P 7  w )  

or, equivalently 

where the relation 

A ( p ,  w )  = -2 Im G'(p ,  w )  

and the definition 

f ( p ,  w )  = -Z ' (P ,  4 / 2  Im .CT(p, U) 

have been used. 
In non-equilibrium conditions, unfortunately, this is no longer the case and we have 

to consider functions of their separate arguments. This is particularly true at high 
electric fields that cannot be treated perturbatively. In steady-state conditions, the time- 
translational invariance does persist [ 111 , and all of the time variables have to depend 
only upon the difference of the two values tl - t2. This is, as a matter of fact, an expression 
of the principle of causality: the effect at time t, depends on the cause only at preceding 
times t2. This is obvious because the Green functions are sums of correlation functions 
of two operators, and for a system that has the same dynamic properties at all times, the 
correlation between two observables at different times will depend only upon the time 
elapsed between them. This principle is, of course, universal, as true in classical as in 
quantum physics. It leads to some useful and interesting properties of the temporal 
Fourier transforms of the causal G' in the plane of the variable w ,  including the relation 
A ( p ,  0) = -2 Im G'(p, U).  

The space-translational invariance along the direction of the applied field is, 
however, violated. This is particularly clear when the applied electric field is represented 
in the scalar-potential gauge. The particle momentum, in this direction, then, is no 
longer a good quantum number. This complication makes the Fourier transform in space 
impractical for the solution of (1.2) because of the mixing of space and time coordinates 
that appears when the interactions with the crystal are modified by the strong electric 
field. The use of the vector-potential gauge, used by many authors [12-181 to represent 
the field, does not simplify the problem since this choice artificially breaks the time- 
translation invariance which is an essential feature of a system in the steady-state regime, 
as discussed before. 

For all these reasons, the description of non-linear transport phenomena is a difficult, 
long-standing and much debated theoretical problem [19,20]. All of the models pre- 
sented so far [21-261 in the literature and that do not make use of the methods of 
many-particle physics , are approximations that are not able to describe adequately the 
simultaneous presence of an external field and of collisions (with phonons or impurities) 
in the electronic system. Most Green function approaches, although rigorous in 
principle, have been limited to weak fields by the use of the gradient expansion, which 
does not describe situations beyond linear response. Furthermore, the way the centre- 
of-mass coordinates ( r ,  R ,  z, T )  [4] are employed in these approaches makes them 
unsuitable for the description of the fluctuation phenomena that appear at length 
scales shorter than the inelastic mean free path [27]. In fact, the spatial and temporal 
dependence of the correlation function G< describes how the concomitance of an 



5994 R Bertoncini et a1 

external field and the scattering processes affects the phase-coherent properties of 
the system, even in a homogeneous, steady-state system. The time and spatial scales 
pertinent to these properties are the inelastic mean free time and the inelastic mean free 
path, respectively [28]. When the centre-of-mass coordinates are employed, the relevant 
time axis is the centre-of-mass time T and the relevant coordinate is the centre-of-mass 
position R .  Then, the assumption that spatially ‘homogeneous’ and steady-state systems 
are independent of R and T[10-181 is equivalent to coarse-graining the system over time 
and space scales corresponding to the inelastic mean free time and the inelastic mean 
free path. As a consequence, none of the fluctuation phenomena that appear on a scale 
smaller than these coarse-graining times and lengths can be taken into account by these 
methods. 

In a recent paper [29], we have proposed a different technique to include high, 
homogeneous electric fields exactly. There we used Airy transforms, instead of Fourier 
transforms, to handle the position dependence parallel to the applied electric field. In 
this way, an analytic model was obtained for the spectral density. This model includes 
both the intracollisional field effect and collisional broadening [30,31]. Furthermore, in 
the assumption of the diagonality of the functions with respectto our new ‘Airy coordinates’ 
s, we were able to derive an integral kinetic equation for the correlation function G‘ 
[32] starting from the sum of the two equations (1.2). Here, we want to show that it is 
possible to generalise those results to non-diagonal G< and 2‘. We will also show that 
even in this case the two Kadanoff-Baym equations (1.2) lead to the same relation G< = 
Af between G< and the quantum distribution function f ,  whether they are added, 
subtracted or solved independently. 

In section 2, we will briefly review the ‘Airy function’ technique and summarise the 
results already presented elsewhere. In section 3, we will generalise these results by 
deriving a quantum kinetic equation valid at high fields and scattering mechanisms 
described by a momentum-independent self-energy. In section 4 we will discuss the 
results obtained and will clarify some obscure points of the previous papers. 

2. The Airy representation formalism 

As mentioned before, we do not try to solve (1.2) by writing them in terms of the centre- 
of-mass coordinates r,  R ,  z, Tand then Fourier transforming with respect to rand z, as 
done in previous approaches. Instead, we include the electric field (given by the scalar 
potential p, = eEz) as a part of the unperturbed Hamiltonian [14] and choose, as our 
basis set, plane waves on the plane normal to the field and continuous set of Airy 
functions of the first kind along the direction of the field. This is the Hilbert space of the 
normalised eigenfunctions of an electron in a uniform electric field. In this space, we 
define a transformation 

by which a functionf, translationally invariant in the transverse direction (as expressed 
by the single transverse position vector r , ) ,  but not in the direction z of the electric field, 
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is written in terms of its transverse momentum p I  and of the ‘Airy variables’ s and s’. 
The Airy coordinate s varies continuously and thus corresponds to the classical turning 
point in z of an electron with energy E ~ ~ , ~  =p:/2m + eEs. L = h2/2meE1I3 is a nor- 
malisation length. As demonstrated in [32],  a function diagonal in the s-variable is not 
translationally invariant along the z direction. This is a very useful property because it 
allows the use of diagonal functions while maintaining the lack of translational invariance 
along the direction of the applied field. In terms of these new variables ( p l ,  s), the first 
of (1.2), for the ‘unperturbed’, field-dependent retarded Green function Gk, in the 
absence of the two particle interaction Z, leads to 

G I E ( P I 9 S 1 ,  z) = -i/fi s(z) exP[-(i/h)Ep,,s,zl (2.2) 

and the second gives G k ( y ,  , s 2 ,  z). The corresponding spectral density function can be 
immediately found [32]: 

A E ( p , ,  s, o) = -2 Im Gh = 2nS(ho - E ~ ~ , ~ ) .  (2.3) 

This can be shown [33] to be equivalent to the result 

A,(p,  z) = ( l / h )  exp{ - ( i /h )[ (p2/2m)z  + (e2E2/24m)z3]} ,  

obtained by using the centre-of-mass coordinates in the gauge invariant formulation 
[14,34].  

In order to determine the interacting, retarded Green function from (1.2),  we need 
a model for Z‘, describing the interactions of the electrons with the crystal. For non- 
degenerate electrons and weak electron-phonon interaction, Z‘ can be written in the 
Born approximation as 

X‘(1, 2 )  = DO>(l, 2)G‘(1, 2).  ( 2  * 4 )  

At low densities, the electrons are not expected to influence the phonons, so for D$ we 
can use the equilibrium phonon Green function 

D o ’ ( l , 2 )  = (i/fi)(4(1)4+(2)) 

with Q, the Boson field operator representing the displacement from equilibrium of the 
ions in the solid at position (rl, t l )  in space-time. For non-polar optical phonons and the 
one-phonon scattering process, G‘ = GIE in (2 .3) ,  the retarded self-energy in (p,, s) 
coordinates is given by [32] 

Re[ F ( s  , o ) ]  = - (l/dZ) (m 3/2/fi2)0 ‘ I2  [Ai’ ( C)Bi’ ( C) - CAi( C)Bi( C) 

+ w4m1 (2.5) 

Im[F(s, o)] = -(l/V%)(m3/2/h2)01/2(Ai’2(<) - <Ai2(<)) 

where 0 = 3113eEL, < = -[e,% - fi(o - r]oo)]/O, and IV/ is the electron-phonon 
matrix element and r] = + 1 (- 1)  corresponds to emission (absorption) of a phonon of 
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Figure 1. (a )  The real part of the self-energy as a function of the reduced energy 5 ,  for 
emission processes. (b)  The imaginary part of the self-energy. The broken curve refers to 
the free-electron case. The parameters are those for silicon. 

frequency oo by the electron. The self-energy above is shown in figure 1. (We use 
parameters appropriate to Si: an optical phonon energy fiwo = 0.039 eV, m = 0.295 mo, 
where mo is the free-electron mass. The electron-phonon interaction is given by a 
deformation potential parameter D, = 6.85 X lolo eV m-I.) 

The approximation G' = GL does not neglect physical effects such as collisional 
broadening, as one might be led to think, because the retarded Green function must still 
be determined self-consistently in (1.2), and the presence of the field in G$ introduces 
high-field effects in the total Green function G'. With this model for Y, equations (1.2) 
are multiplicative equations and both lead to 

G'k, , S I  9 $ 2 ;  0) = d(Sl - SZ) / ( f iW - E p l , s l  - x r ( S ,  4). (2.6) 

This generalises to high fields the result that Mahan and co-workers [ l l ]  obtained in the 
linear response regime: equations (1.2) are satisfied by the same function G', which has 
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the equilibrium form. However, the field is now included exactly, to all orders, in both 
the energy E ~ ~ , ~  and the self-energy F(s, U) .  The spectral density can be immediately 
found to be 

A ( p ,  ,s, 0) = -21mCr(s, U ) / [  (hw - L,s  - Re2  (s, U))’ + (ImZ (s, o ) ) ~ ]  (2.7) 

which, again, has the equilibrium form. Equation (2.7) is shown in figure 2. In this 
representation A(p , ,  s, w )  is positive definite and satisfies the normal sum rules [4,34]. 
The integral overp, of (2.7) gives the density of states (in this case a two-dimensional 
density of states) 

hw - eEs - Re Cr(s, w )  
p ( s ,  w )  = :I dp, A ( p ,  , s, w )  = 4m 

which is plotted in figure 3. 

3. Quantum kinetic equations 

Because of the problems discussed in the introduction, it is not an easy problem to derive 
a model for the spectral function that includes both collisional broadening and the 
intracollisional field effect. So far, to the best of our knowledge, this has been 
accomplished only through the Airy representation formalism discussed in the previous 
section. 

In order for the spectral function A ( p , ,  s, w )  to be of utility in transport problems, 
however, we must also find (and solve!) a kinetic equation for the correlation function 
G‘, or for a quantum mechanical distribution function related to it, within this new 
formalism. That is, we have to solve the Kadanoff-Baym equations (1.2) for G<  in terms 
of the variables ( p , ,  s, U). Explicitly, equations (1.2) read 

--r 

(3. la) 

) a 
at1 

( ih--H(r l , t l )  G‘(r17tl;r27t2) = J m  dr3dt3 (xr(r1,t1;r37t3) 

G‘(r3, t3;r2, l 2 )  + Z < ( r l ,  t l ;  r3, t3)Ga(r3, l3; r2, l2)) 

I-: 
(3. lb) 

By Fourier transforming the transverse variable rI = (rl - r2) ,  and Airy transforming 
the longitudinal variables z1 and z2 on both sides of (3 .1~)  and (3.lb), these can be 
written in ( p , ,  s) space as 

a 
( at2 

-in - - H ( r 2 ,  t2) G<(r ,  , tl ; r 2 ,  t 2 )  = dr3  dt3 (Gr( r l ,  tl ; r 3 ,  t3) 

x 2 < (r3 , t3 ; r 2  9 t2 ) + < ( r l  7 l l ;  r3 7 l 3  )x a (r3 3 l 3  ; r2 , f2 1). 

G < ( P , , S ~ , S ~ ; Z ) =  d s 3 ( x r ( ~ , , ~ 1 , ~ 3 ; ~ - - ‘ )  
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Figure 2. The spectral density function for three different values of the electric field. The 
broken curve refers to calculations with collisional broadening only. 
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- c  

Figure 3. The density of energy states compared with that of a two-dimensional free-particle 
system (broken curve). The presence of the electric field and of the collisions generates a 
series of damped oscillations for positive energies and a 'tunnelling' tail for negative energies. 
In the limit of high energies, both curves approach 4nm (as required by (2.8)). 

where the change of variables z = tl - t2 and z' = t3 - t2 has also been performed. 

For our system of electrons interacting with non-polar optical phonons in equilib- 
rium, the self-energy E<, which is, in general, given by 

E<(1,2)  = D:(l, 2)G'(1,2), 
is independent of momentum and can be expressed in s-coordinates as 

where q is the phonon momentum, S = [(sl + s3 )  - (s2 + s4)][(s1 - s3)' - (s2 - s ~ ) ~ ] ,  
and Yo and KO are the Neumann and modified Bessel functions of order zero [35], 
respectively. 

At this point, it is a standard procedure [4,11,14] to take the sum and the difference 
of these two equations (3.2). In our case, however, this turns out to yield exactly the 
same result. In order to show how this comes about, notice that the RHS of both ( 3 . 2 ~ )  
and (3.2b) are sums of convolution products, so the Fourier transform in the time domain 
can be done trivially. Now we subtract (3.2b) from ( 3 . 2 ~ )  and use the model (2.5) for Er 
and the result (2 .6)  for GI. In this way, we obtain 

eE(s1 --sZ)G<(Pl,Sl,S2;~) = (Gr(PI,S1;O)E<(S1,SZ; 0) 

+ G<(P, 7 31 7 sz; 0)Ea(s2; 0) 

-Z ' (SI ;  w)G<(p , , s1 ,~2 ;  w )  - x<(s17s2;w)Ga(p1,s2; 0)) ( 3 . 3 ~ )  



6000 R Bertoncini et a1 

or, solving for Gc, 

(3.4b) 

which is identical to (3.4~).  The same result, however, can be obtained by solving (3.2~)  
and (3.2b) directly without going through the 'subtraction' and 'addition' procedure. In 
fact, the Fourier transform from z to w of ( 3 . 2 ~ )  and (3.2b) leads to 

(hw - Ep1,s1)G<(Pl,sl,S2; w )  = Z'(S1, W)G<(Pl,Sl,Sz; 0) 

(3.52) 

(3.5b) 

respectively. These can be solved for G< and the result is precisely (3.4~).  Note that the 
equivalence of the two Kadanoff and Baym equations is not dependent upon the choice 
of the type of phonon scattering, as it is a result based on (3.2), in which the phonon 
matrix elements appear only in general formal expressions. 

Now, remembering that G' = (Ga)*, by substituting Re G'and Im Grin (3.4a), we 
obtain 

(3.6~)  G < ( p L ,  S I ,  ~ 2 ;  0) = A ( P ,  3 SI; O ) ~ I ( P . L ,  S I ,  S2; w )  

where the 'distribution function' f l  defined by 

f l ( p 1 ,  SI ,  ~ 2 ;  0) = (G'(p1, sl; w)/Gr(pl, $2; w))(-z<(sl, $2;  w)/2 1mxr(s2; w)).  
(3.6b) 

Equations (3.6) satisfy both (3.52) and (3%) as can be verified by substitution. 
The expression (3 .6~)  for G< is quite interesting. It is an exact relation and has, in 

fact, the same formal structure of the non-equilibrium ansutze introduced in many 
earlier attempts to solve both the high-field and the linear-response-regime problem 
[3,11,12,14-181. Equation (3 .6~)  expresses a direct relationship between the cor- 
relation function G' and a quantum mechanical distribution functionfl. In the present 
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form, however, fl has no practical advantage with respect to G' since it contains the 
same number of variables, and we might as well solve ( 3 . 6 ~ )  directly for G' as can be 
easily realised by recalling the expression for F given above. 

At this point, it should be noticed that the separation given by (3.6) is not unique, 
since, by substituting Re G" and Im G" in (3.4u), we can write 

( 3 . 7 ~ )  G ' (P 1 9 1 7 s2 ; U )  = A ( P 1 , ~2 ; w)f2 ( P 1 , 1 ~2 ; U )  

with 

f 2 ( ~ 1 ,  S I ,  s2 ; 0) = (G ( P ~ ,  s2 ; o)/Ga(pl  , s1 ; w))( -z< (SI,  s2 ; w)/2 Im Er (sl ; w) )  
(3.76) 

A unique quantum distribution function, however, is obtained whens, = s2. Therefore, 
we have solved (3.6) by assuming diagonality of G' with respect to the s-variable 1321: 

G'(s1, 32) G'(sl)G(sl - ~ 2 ) .  

In this case, (3.6) reads 

G'(PI , s; = A(p1,s;  w>f(s; w )  

where 

Here h ( o  + qwo) represents the total electronic energy before the scattering event has 
occurred and s' and s are the electron turning points before and after the scattering 
event, respectively. Therefore, the kernel B(s, s'; w + q o o )  is an operator that acts on 
the distribution function f(s'; w + qwo) before the scattering, and transforms it to 
f(s; U),  the distribution function after the scattering. The integral equation was solved 
numerically by interaction and the quantity 

G'(s, 0) = d p i  G<(P, ,  s, w). (3.9) I 
proportional to the density of particles, is plotted in figure 4 as a function of the reduced 
energy 1;. By anti-Airy transforming (3.9) 

G'(s; w )  + G'(z, z ' ;  w) 
and, according to ( l . l ) ,  for z-+ z ' ,  we obtain G'(z; w ) ,  a quantity proportional to 
the density of particles in terms of the reduced position coordinate f = 
[z - h(w + q ~ , , ) / e E ] / 3 ~ / ~ L .  The result is shown in figure 5. It should be noted that 
G<(z; w) is actually a function of the single variable f which is essentially the shifted 
position ( z  - hw/eE). Integrating over f will, therefore, wash away its oscillatory 
nature. The fluctuation effects at the fine-grained scale ( z  - ho/eE) will be averaged 
out and a uniform concentration will appear. 
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0.3 1 1 
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Figure 4. The correlation function (in natural units, h / w o L 2 )  as a function of f ‘ .  

0.1 - E = 500 kV/m 

h 

3 
rf 5 0.05 - 

0.0, I I 
-1 .o 0.0 2.0 4.0 5.0 

- 5  

Figure 5. The correlation function (in natural units) as a function of the reduced position e. 

It should further be noted that a momentum-independent distribution function can 
be obtained, in the non-diagonal case, by solving (3.4b) in a slightly different manner. 
In this case 

G ( p , , s , , s 2 ; w )  = (A(P,,sl;w)A(P,,s2;w))”2fs(s1,s2;w) (3.10a) 

where fs is the ‘symmetric distribution function’ 

fs(s1,sZ; w )  = h~‘(s1,s2; w)/<Im(zr(sl; w))1m(zr(s2; 0)). (3. lob) 

Although the distribution function is now in a form reminiscent of that in equilibrium, 
this has been achieved at the expense of a more complicated ‘joint’ spectral function 
which is the geometric mean of the two spectral functions evaluated at s1 and s2. In fact, 
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this is to be expected, and has a connection to results obtained using centre-of-mass 
coordinates. In the latter case, A(p, o) depends upon pz which is the spatial Fourier 
transform of the z1 - z2  dependence. It must be remembered that the dependence upon 
only z1 - z2  was achieved by an ad hoc assumption that the system was independent of 
z1 + z 2 .  Indeed, this is only the case for z1 + z2  A ,  the inelastic mean free path [28]. 
In this case, thep-dependence couples two positions z1 and z2  in the spectral density. 
This coupling is also present in (3.10~) since the 'joint' function now includes both z 
and z 2  through s1 and s 2 .  

4. Results and discussion 

We have utilised the Kadanoff-Baym methods to develop a formalism that can be used 
for high, homogeneous fields. The aim was to derive a spectral density model and a 
quantum kinetic equation that account for both the energy dependence of the collision 
rate and the intracollisional field effect in a relatively simple and rigorous way. In order 
to accomplish this, we have introduced a representation in terms of Airy coordinates 
that replaces the usual momentum representation along the field direction [29,32], We 
point out that our technique differs from previous ones that have found solutions in 
terms of Airy functions. The introduction of the Airy transform, in fact, introduces the 
proper symmetry of the system from the beginning, thus yielding mathematically simpler 
equations with fewer coordinates and convolutions. 

Furthermore, the possibility of dealing with functions that are diagonal in the trans- 
form variable s, while keeping their non-translational properties unaltered, allows us to 
avoid the coarse-gaining procedure that was implied when the coordinates R and T 
were set to zero [17,18,21] for homogeneous and steady-state systems, or the energy 
renormalisation (hS2 = no - eE . R) was performed [ll], in those approaches that util- 
ised the center-of-mass coordinates r, z, R and T. In our formalism, all components are 
kept in the calculation, but are associated with different values of the s-variable in 
transform space. This, therefore, makes it possible to account for the fluctuation pheno- 
mena that appear at length scales smaller than the inelastic mean free path. In fact, the 
appearance of fine-grained effects is confirmed by the presence of a series of damped 
oscillations in both the real and imaginary parts of the self-energy. They are a conse- 
quence of the inclusion of the correct symmetry of the system and of the non-perturbative 
treatment of the electric field. 

It has been fashionable to ignore R and T in steady-state systems that are homo- 
geneous except for a constant, uniform field, but the present approach avoids this 
approximation. Both R and T (depending upon the gauge choice) reflect the absolute 
phase relationship inherent in the Green functions. For lengths smaller than the enelastic 
mean free path, longitudinal inhomogeneity is recovered only after all transverse vari- 
ations have been integrated out of the problem. Neglect, for instance, of the R-variations 
is tantamount to smoothing these microfluctuations, and hence to coarse-graining over 
a dimension longer than the inelastic mean free path. The Airy transform approach 
discussed here avoids this process by retaining the exact treatment of the breakdown of 
translational invariance in the field. 

The oscillations of the real part of the self-energy (which describes how the unper- 
turbed energy no = is modified by the presence of the interactions) denote regions 
in which the energy of the electron is raised (positive values of the self-energy) and 
regions in which the energy of the electron is lowered (negative values of the self-energy), 
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The net result is the existence of preferred energies for the electron, corresponding to 
alternating zero-crossing of Re Cr. The validity of the interperetation is reinforced by 
the step-like oscillations present in Im Cr. Since this quantity is proportional to the 
scattering rate [36], the plateaus are an indication of the quasi-two-dimensional sub- 
band tendencies mentioned above. 

The presence of the intracollisional field effect and of collisional broadening produces 
a tail in Im C' for f < 0. The existence of such a tail to negative energies corresponds to 
the part with f > 0 in Ai(c), and represents tunnelling into the classically forbidden 
region. This smooths out the sharp threshold in energy of the scattering rate, making 
possible transitions that cannot occur in the absence of the field [2]. 

The spectral function A ( p ,  , s, w )  presents an interesting double-peak structure. 
The right peak would, then, describe the fact that the carrier has been accelerated during 
the emission of a phonon. The electron loses less energy to the phonon and exits the 
scattering process with an energy change greater than hwo. The left-hand peak, on 
the other hand, is a consequence of quantum-mechnical tunnelling and indicates the 
possibility for the electron to regain part of the energy lost to the phonon. It is as if the 
particle were decelerated by the field during the emission process, thus ending the 
collision with an energy loss smaller than hwo . The energy change in the lattice is always 
just the phonon energy, but the electron sees a modified energy by virtue of the field 
acting during the collision. This interpretation is supported by the fact that the height of 
the right-hand peak, relative to the left-hand one, decreases, as does their relative 
separation, until they merge to form the Lorentzian shape typical of the collisional 
broadening effect in the absence of a field [32]. Furthermore, the density of states p(s, w )  
shown in figure 3 indicates that the interaction of the field and the scattering processes 
is creating a quasi-two-dimensional behaviour in the electron system. 

These physical effects present in Z * andA are embodied and synthesised in G'(s; w).  
Here again, we find the existence of particles with negative total energy as well as a series 
of preferred energy levels, indicated by the damped oscillations occurring at > 0. 
Furthermore, the presence of the high-energy tail suggests that a carrier can increase its 
kinetic energy even when it emits a phonon because of the collisional-broadening- 
induced Lorentzian-type tail of the spectral of the density function and because of the 
intracollisional field effect. 

The oscillatory behaviour of the carrier G<(z; U )  indicates the existence of preferred 
positions for the particle, caused by the uncertainties introduced by the concomitance 
of collisional broadening and intracollisional field effect. This is a phenomenon that 
is, somehow, expected as a consequence of the non-conservation of momentum in 
inhomogeneous systems: the uncertainty in the definition of p is ultimately responsible 
for the broadening of the electron position after each scattering event. This suggests the 
possiblility of a discontinuous trajectory for the electron and that transport might, 
therefore, be, more appropriately, described in terms of the 'field-assisted hopping' in 
the z direction, between states described by discrete values of the Airy coordinate. 

Another important result presented here is the derivation of the G' = Afrelation. 
For a space- and time-translationally invariant system, the spectral function A(x) is real 
and exactly related to the correlation functions G< and G' by [4] 

(3.11b) 
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where f ( w )  = l/[eph" * 11. These relations are an expression of the 'fluctuation-dis- 
sipation' theorem [37]. In fact, they relate the mean square fluctuation 

( $ ( o ) $ ' ( w ) )  = d t  ei""($(t)$t(0)) CC G'(o) 

of the field operators (or, more generally, of any appropriate operator) to Im G ' ( w ) ,  
which is often proportional to the dissipation in the system [38]. This is a celebrated 
result, and because of its generality it is believed to hold also for non-equilibrium 
systems. However, for these cases, none of the previous approaches has been able 
to produce an expression that, through the distribution function, exactly relates the 
correlation function and the spectral function [39]. Evenin the near-equilibrium gradient 
approximation only ansutze are available. In the previous treatment the use of the 
Wigner coordinates and the choice of the vector-potential gauge to represent the external 
fields led to systems whose temporal and spatial translational invariance was irrevocably 
lost. In our formalism, the time translational invariance of the system was preserved by 
the scalar-potential gauge. The broken homogeneity along the field direction was only 
formally restored by the assumption of the dependence of the retarded self-energy on 
just one Airy variable s. This, as already pointed out, does not imply any assumption of 
translational invariance in the real-space coordina'e z .  In this respect, the G = fA result 
(3.6) was derived at arbitrary fields in the Airy representation in a quite general manner. 

This recovery of a fluctuation-dissipation theorem is rather general in another way: 
while our fundamental approximation is that the retarded (and thus also advanced) self- 
energy is diagonal in the Airy coordinate, we do not need to make any diagonal 
approximation for the other Green functions and self-energies (< and >). In this non- 
diagonal case, it is possible to achieve the separation of (3.11) by introducing a 'joint' 
spectral density A(p, , sl, s 2 ,  o) defined as the geometrical mean of the spectral densi- 
ties at s1 and s2.  This joint function fully retains the concept of the broken homogeneity 
and correlated fluctuations at points represented by s1 and s2 .  

Closely linked to these results is the equivalence of the two Kadanoff-Baym 
equations in this representation. In the pure case, this suggests that when the time- 
translation invariance is not destroyed, the two equations give the same information, as 
is the case for the equilibrium systems. 
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